Let's take a closer look at the chemical processes occurring inside the device across all the mentioned variants.
Upon contact with the solution, the mixture initially dissolves its unwanted component in water:
SO₂ + H₂O → SO₂ ∙ H₂O
Subsequently, the resulting acid is neutralized by an alkaline reagent.
For systems using caustic soda solutions, the reaction proceeds as follows:
SO₂ ∙ H₂O + NaOH → NaHSO3 + 2H₂O
Sodium hydroxide exhibits higher reactivity compared to other reagents, ensuring maximum efficiency in removing sulfur dioxide. The resulting salt products are water-soluble and resistant to precipitation within the equipment. However, caustic scrubbers for SO2 removal using this method are more expensive to operate due to the higher cost of NaOH and equipment corrosion caused by its high chemical activity.
In wet SO2 caustic scrubbers, another widely used sodium-based process involves absorbing sulfur dioxide into a solution of sodium sulfite in water, leading to the formation of sodium bisulfite, which precipitates out. Upon heating, these reactions reverse, converting sodium pyrosulfite into a concentrated stream of sulfur dioxide and sodium sulfite.
Na₂SO3 + SO₂ + H₂O → 2NaHSO3
2NaHSO₃(saturated) → Na₂S₂O5 + H₂O
Na₂S₂O5 → Na₂SO3 + SO₂
The sulfur dioxide can be used in further reactions, such as for the production of sulfuric acid, while the salt is recycled back into the process. This method employs regenerable sodium sulfite as an absorbent for unwanted gases, thereby reducing costs. The resulting product (sodium pyrosulfite) finds practical applications in other industries rather than being disposed of in landfills.
For systems employing limestone, the reaction equations proceed as follows:
SO₂2 ∙ H₂O + CaCO₃ → CaSO₃ + H₂O + CO₂;
2SO₂ ∙ H₂O + O₂ + 2CaCO₃ → 2CaSO₄ + 2H₂O + 2CO₂
In this SO2 scrubber process, gases are neutralized while suspended in a solution. Additionally, the salts formed have poor solubility in water, including CaCO₃ itself. It's important to note that the aqueous solution of sulfur dioxide undergoes partial oxidation in the air, resulting in the presence of both calcium sulfite and calcium sulfate in the products. While this stage may offer advantages, we will revisit this point shortly.
The sulfur dioxide scrubber reactions using lime appear as follows:
CaO2 + H₂O → Ca(OH)2;
SO₂ ∙ H₂O + Ca(OH)₂ → CaSO₃ + 2H₂O;
2CaSO₃ + O₂ → 2CaSO₄
You'll notice that the composition of the products is similar to the previous method.
SO2 wet scrubbers utilizing limestone or lime are often preferred due to their lower reagent costs and reduced corrosion potential compared to systems employing NaOH. Moreover, they exhibit superior efficiency in the compound capture relative to all existing methods. The table below outlines the most effective liquid-based methods currently employed.